http://topplus.com.ua

Главная | Регистрация | Вход
Пятница, 03.05.2024, 01:28
Приветствую Вас Гость | RSS
[ Новые сообщения · Участники · Правила форума · Поиск · RSS ]
  • Страница 1 из 1
  • 1
Форум » Самострой » Лодку своими руками » Водомет (http://www.katera-lodki.ru/ustrvod)
Водомет
RDДата: Суббота, 07.04.2012, 19:30 | Сообщение # 1
Генералиссимус
Группа: Админ
Сообщений: 41
Статус: Offline
Устройство водомётов
Идея создания водометного движителя появилась значительно раньше, чем был изобретен гребной винт. Еще в 1784 г. Джемс Рамсей продемонстрировал на реке Потомак первый пароход с водометным движителем. Известны также результаты испытаний, которые в 1867 г. проводил военно-морской флот Англии. На канонерской лодке длиной 50 метров, оснащенной центробежным водометом была установлена паровая машина мощностью 760 л. с. Этот двигатель при частоте вращения 40 об/мин приводил в действие насос, ротор которого имел диаметр около 4,25 м. Канонерка с такой установкой развивала скорость 17,2 км/час. После этого были проведены многочисленные исследования и натурные испытания разнообразных конструкций водометов. Последним решением, имеющим принципиальное значение в этой области, пожалуй, оказалась идея Гамильтона, который в 1953 г. поднял сопло своего центробежного водомета над водой и таким образом получил значительный прирост скорости (с 18 до 27 км/час на его катере).

Водометный движитель действует аналогично гребному винту: вода засасывается спереди, лопатки насоса, подобно лопастям винта, придают ей ускорение, после чего вода выталкивается за корму. Устройство водомёта, как правило, состоит из насоса (винта) с валом, водометной трубы (водовода), спрямляющего аппарата (контрпропеллера) и реверсивно-рулевого устройства. При вращении насоса на засасывающей стороне его лопастей, как и гребного винта, возникает разрежение, благодаря которому вода по приемной трубе (водозаборнику) поднимается к колесу насоса. Здесь, получив некоторое ускорение, вода выбрасывается через сопло, выходное сечение которого несколько меньше, чем диаметр трубы насоса.

Применение водометных движителей на скоростных судах, как известно, сопряжено с определенными сложностями. Большое значение имеет, например, то обстоятельство, что не все, даже важнейшие элементы водомета, могли быть определены расчетом: чуть ли не в каждом случае — для каждого конкретного сочетания корпуса и силовой установки — требовалось проводить обширные эксперименты, варьируя различными параметрами движителя (диаметр и шаг ротора, сужение сопла, форма входного отверстия и сопла и т. п.). Оказалось, что существуют свои тонкости и в выборе обводов корпуса. При установке под днищем обычного гребного винта линия действия его упора чаще всего проходит ниже центра тяжести катера; под действием этой силы судно приобретает ходовой дифферент на корму, благодаря чему соответственно уменьшается смоченная поверхность корпуса на ходу.

Водометный движитель располагается внутри корпуса — над днищем катера, поэтому данный эффект если не исчезает, то существенно уменьшается. Таким образом, катер, рассчитанный на движение при помощи гребного винта, при установке водомета идет с меньшим ходовым дифферентом и имеет большую смоченную поверхность корпуса, следствием чего является известная потеря скорости. Кроме того, корпуса с сильно заостренной носовой оконечностью и большой «закруткой» (изменением угла килеватости по длине глиссирующей части днища) при установке водомета оказываются неустойчивыми на курсе, плохо управляются на поворотах. Выяснилось, что на водометных катерах недопустимы подпорные клинья или отгибы днища вниз у транца.

В силу неразрывности потока для прохода той же массы воды через меньшее сечение за одинаковое время скорость потока увеличивается, чем и создается упор движителя.

За рабочим колесом водометного движителя располагается напорный канал — сопло, формирующее струю для обеспечения тяги. Площадь на срезе сопла меньше, чем на входе в него, поскольку рабочее колесо создает повышенное давление, которое необходимо преобразовать в кинетическую энергию выбрасываемой струи, т. е. обеспечить приращение скорости. Сопло может быть сделано либо с внешним поджатием — в этом случае в конце проточной части предусматривается сужение наружного трубопровода, либо с внутренним поджатием, которое осуществляется расширением центрального тела, являющегося продолжением ступицы спрямляющего аппарата. При выборе формы и геометрических элементов выходного сопла стремятся обеспечить плавный отвод жидкости от насоса, необходимое гидравлическое сечение, т. е. площадь выходного отверстия, максимально возможную устойчивость и минимальные гидравлические потери. Для сокращения длины движителя в некоторых конструкциях совмещают сопло со спрямляющим аппаратом рабочего колеса. Такая компоновка позволяет уменьшить диффузорность потока и снизить гидравлические потери.

У водометных движителей в отличие от гребных винтов нельзя изменять направление силы упора путем изменения направления вращения рабочего колеса. Поэтому эти движители оборудуются специальными реверсивными устройствами, отклоняющими реактивную струю на ~ 180°, что приводит к изменению направления действия силы реакции струи, а значит, и направления тяги движителя. Поскольку эти устройства используются также и для управления катером, их обычно называют реверсивно-рулевыми. Конструктивно осевые насосы могут быть выполнены по одноступенчатой или многоступенчатой схемам (рис. 1).

Рис. 1. А — Одноступенчатый осевой насос.
1 — сопло реверса; 2 — сопло; 3 — спрямляющий аппарат; 4 — рабочее колесо; 5 — привод. Б — Трехступенчатый осевой насос. 1 — сопло реверса; 2 — заслонка управления; 3 — сопло; 4 — три рабочих колеса; 5 — привод; 6 — направляющие аппараты.

Существуют также водометы с так называемым диагональным насосом (рис. 2).

Рис. 2. А — Диагональный насос (США). Устанавливается на патрульных катерах.
1 — сопло реверса; 2 — сопло; 3 — спрямляющий аппарат; 4 — рабочее колесо; 5 — привод. Б — Поворотный водомет с диагональным насосом, установленный за транцем катера. 1 — сопло реверса; 2 — сопло; 3 — спрямляющий аппарат; 4 — рабочее колесо; 5 — привод.

Полемика о целесообразности применения водометных движителей на катерах и мотолодках продолжается не один десяток лет. Например, в нашей стране, начиная еще с 60-х годов, когда появились первые проекты отечественных подвесных водометных моторов, конструкторы и производственники не приходят к общему мнению по этому вопросу. Поскольку тема весьма актуальна и по сей день (приверженцев той и другой точки зрения всегда было достаточно), стоит несколько подробнее остановиться на аргументах сторон. Излишне говорить, что к сторонникам промышленного производства водометов в основном относятся те водномоторники, которые вынуждены часто преодолевать перекаты, мели, заросшие травой участки водоемов. Действительно, мелких, порожистых, засоренных молевым сплавом леса рек и речушек у нас великое множество. Количество их постоянно возрастает в связи с прогрессирующим обмелением. Использовать в этих условиях самую удобную и доступную силовую установку — подвесной мотор — в большинстве случаев невозможно. На помощь может прийти только водомет, который незаменим на таких маршрутах.

Наряду с известными преимуществами водометов (небольшая осадка судна, отсутствие выступающих за габариты днища частей) им присущи и определенные недостатки. Среди них основными являются значительные потери мощности на трение воды о стенки водовода, в направляющих аппаратах и в решетке всасывания. Кроме того, следует учитывать, что в насос даже на самых высоких скоростях должна поступать вода, а не смесь воды с воздухом. Если днище лодки слишком плоское или имеет обратную килеватость, как, например, у саней Фокса, то воздух засасывается довольно легко. При наличии пузырей воздуха в воде упор водомета резко снижается.

Следует также учитывать и своеобразное поведение катера с водометом на малом и среднем ходу. Увеличение и снижение скорости катера с обычным гребным винтом происходит почти пропорционально частоте вращения двигателя. Совсем по-другому ведет себя водометный движитель. Высокая скорость выброса струи достигается благодаря создаваемому в насосе давлению, а также правильно подобранному диаметру выходного сопла. Чтобы струя вызывала наибольший реактивный эффект, вся установка, состоящая из двигателя, насоса и выпускного сопла, должна быть рассчитана на максимальные мощность и частоту вращения двигателя. Как только частота вращения снижается, и катер теряет скорость, давление в системе начинает прогрессивно уменьшаться, так как диаметр сопла отрегулирован на максимальную частоту вращения. В результате скорость снижается в значительно большей степени, чем частота вращения двигателя. Другими словами, на водомете очень трудно (а порой и невозможно) получить промежуточные величины скоростей. Например, при плавном увеличении оборотов катер вначале будет идти со скоростью 15 км/час, а в какой-то момент резким скачком повысит скорость до 50 км/час. Это может происходить даже при очень незначительном повышении оборотов. Такая же картина может наблюдаться и при снижении оборотов двигателя.

Для наглядности можно сравнить режимы работы винтовой и водометной установок при разных скоростях движения. Например, при 4000 об/мин 2 лодки, оборудованные гребным винтом и водометом, имеют скорость около 60 км/час, при снижении частоты вращения до 2000 об/мин скорость лодки с гребным винтом равна 27 км/час, а с водометным движителем — лишь 14 км/час. Такую особенность отражает ступенчатая форма диаграммы зависимости скорости катера от частоты вращения, характерная для водометов (рис. 3).

Рис. 3. Диаграмма зависимости скорости катера с водометным движителем и гребным винтом от частоты вращения двигателя (по Баадеру, 1976).

Водометные движители
Водометные движители, как и гребные винты, относятся к числу гидрореактивных движителей, создающих упор за счет реакции отбрасываемой с некоторым ускорением массы воды. В отличие от гребного винта, движущиеся части водомета находятся внутри корпуса судна и надежно защищены от повреждений при встрече с подводными препятствиями, что и определяет основное преимущество этого вида движителей.
Моторные суда с водометами могут проходить по мелководью с глубинами, почти равными осадке корпуса, т. е. до 0,1—0,2 м, преодолевать засоренные и заросшие участки водоемов и даже отдельные препятствия, выступающие из воды. Кроме того, к преимуществам водометного движителя относятся:
— уменьшение сопротивления воды движению судна вследствие отсутствия выступающих частей;
— относительная простота изготовления реверсивно-рулевого устройства взамен более сложных реверс-редукторов;
— высокая маневренность, обеспечиваемая реверсивно-рулевым устройством, воздействующим непосредственно на выбрасываемую струю воды;
— значительное укорочение и упрощение линии валопровода;
— менее шумная работа движительной установки;
— возможность установки двигателя горизонтально или с минимальным наклоном, что улучшает его работу и ликвидирует потери, связанные с наклонным валопроводом.
Основной недостаток водометного движителя — более низкий по сравнению с гребными винтами пропульсивный к. п. д., равный 0,35—0,5. Это вызвано потерями мощности на подъем струи воды выше ватерлинии и преодоление дополнительного сопротивления в трубе водомета.
Однако отсутствие выступающих частей в значительной степени компенсирует этот недостаток, так что в конечном итоге эффективность водомета иногда оказывается выше, чем обычного гребного винта.
Любой водометный движитель состоит, как правило, из насоса (винта) с валом, водометной трубы (водовода), спрямляющего аппарата (контрпропеллера) и реверсивно-рулевого устройства. При вращении насоса на засасывающей стороне его лопастей, как и гребного винта, возникает разрежение, благодаря которому вода по приемной трубе (водозаборнику) поднимается к диску насоса. Здесь, получив некоторое ускорение, вода выбрасывается через сопло, выходное сечение которого меньше, чем диаметр трубы насоса. В силу неразрывности потока для прохода той же массы воды через меньшее сечение за одинаковое время скорость потока должна быть больше; таким образом, суженное сопло увеличивает скорость выбрасываемой струи воды.
Как известно, реакция отбрасываемой массы воды создает упор движителя. В данном случае полезный упор, равный сопротивлению воды, определяют по формуле
Pe = m(u – vp),
где т — масса воды, отбрасываемой движителем в 1 сек;
и — скорость струи за соплом, м/сек;
vp = v (1 - w) — скорость моторного судна с учетом попутного
потока
Из этой формулы следует, что упор водометного движителя увеличивается с увеличением отбрасываемой массы воды и сообщенной ей скорости w = u - vp
К. п. д. водометного движителя складывается из следующих составляющих:

h = hи hн hм hт
где hи — так называемый идеальный к. п. д. любого движителя, учитывающий потери мощности, связанные с перемещением отбрасываемых масс воды, не считая потерь на трение жидкости, закручивание потока и т. п.;
hн — к. п. д. насоса;
hм — механический к. п. д. валопровода;
hт — условный к. п. д. водометной трубы, учитывающий потери мощности на трение жидкости в трубе, на местные сопротивления и т. п.
Из теории известно, что к. п. д. идеального движителя
hи = 2 / ( 1 + ½ x u / v )
откуда следует, что чем больше разность между и и v( скорость хода судна ), тем ниже hи . Возвращаясь к формуле полезного упора, видим, что более высокую эффективность будет иметь водомет, отбрасывающий большие массы воды с меньшей скоростью.
Если перейти к насосным характеристикам, то массу воды можно выразить т = pQ, а сообщенная струе воды скорость, эквивалентная напору, создаваемому насосом, равна w = и — vp. Следовательно, водометный движитель может быть эффективным только при условии, что его насос будет создавать малый напор при большом расходе воды. Этому условию в наибольшей степени соответствуют осевые насосы пропеллерного типа, выпускаемые по ГОСТ 9366—60; их преимущественно и используют на рассматриваемых моторных судах. В некоторых случаях, например в подвесных моторах с водометными движителями, применяют центробежные насосы, однако это диктуется, в основном, стремлением упростить конструкцию за счет ликвидации конической передачи.
Конструкция водометного движителя для серийного двигателя СМ-557-Л приведена на
фото 1.Водометный движитель.
/ — реверсивно-рулевое устройство, 2 — сопло, 3 — спрямляющий аппарат; 4 — рабочее колесо (ротор), 5 — водометная труба; 6 — гребной вал, 7 — сальниковое уплотнение

Этот комплекс разработан для установки на мотолодке Казанка, но его можно применить на любой другой подобной мотолодке водоизмещением 500—600 кг. Элементы движителя могут быть использованы также в качестве прототипа при проектировании водометов и для других судов и двигателей.
Ниже приведены основные рекомендации по проектированию и изготовлению элементов водометного движителя.
Рабочее колесо (ротор). Рабочее колесо водометного движителя в принципе работает как гребной винт, поэтому расчет его основных характеристик можно производить методом эквивалентного винта по диаграммам для изолированных винтов, но с учетом специфических условий работы в трубе и взаимодействия с корпусом моторного судна. Не вдаваясь в теоретическую часть, поясним использование метода профессора А. М. Басина на примере расчета рабочего колеса водомета, изображенного на рис. 1.
Исходные величины: мощность двигателя Ne = 13,5 л. с., число оборотов п = 3500 об/мин, или пс — 58,3 об/сек, скорость хода лодки v = 31 км/ч = 8,62 м/сек, сопротивление корпуса при этой скорости RK = 52 кг, с учетом 3—4% надбавки на сопротивление трубы водомета общее сопротивление R = 54 кг.
Скорость хода судна и сопротивление корпуса определяют любым из изложенных ранее методов: расчетом по прототипу или, лучше всего, буксировкой корпуса за достаточно мощным моторным судном. При наличии кривой сопротивления в зависимости от скорости хода расчет производят для нескольких значений скорости.
Если известна только скорость хода, то сопротивление определяют по формуле
R = Pe = ( 75 Ne / v ) x h

К. п. д. водометного движителя составляет 0,35—0,50 в зависимости от скорости. В первом приближении можно принять h = 0,45, тогда для нашего случая

Pe = ( 75 х 13,5 х 0,45 ) / 8.62 = 53 кГ

Небольшое расхождение, практически не влияет на точность расчета, получается из – за приближенного значения h . В действительности для данного случая h = 0,46 и Pe = 54 кг.


 
VADUXAДата: Суббота, 17.11.2012, 22:21 | Сообщение # 2
Рядовой
Группа: Пользователи
Сообщений: 7
Статус: Offline
Добавлю по водометам.
ВД 180, лопаточное поджатие.

Добавлено (17.11.2012, 22:21)
---------------------------------------------
Чертежи водометов. http://boat-zone.ru/index.php?option=com_content&view=category&layout=blog&id=5&Itemid=13

Прикрепления: 6449301.jpg (74.9 Kb)


www.boat-zone.ru
www.зоналодок.рф
 
Форум » Самострой » Лодку своими руками » Водомет (http://www.katera-lodki.ru/ustrvod)
  • Страница 1 из 1
  • 1
Поиск:


http://topplus.com.ua /> © 2024 | Создать бесплатный сайт с uCoz
ТопПлюс